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Summary. Congdon argued that the use of parametric modelling of mortality data is necessary in
many practical demographical problems. In this paper, we focus on a form of model introduced by
Heligman and Pollard in 1980, and we adopt a Bayesian analysis, using Markov chain Monte Carlo
simulation, to produce the posterior summaries required. This opens the way to richer, more flexible
inference summaries and avoids the numerical problems that are encountered with classical
methods. Particular methodologies to cope with incomplete life-tables and a derivation of joint
lifetimes, median times to death and related quantities of interest are also presented.
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1. Introduction

The representation of mortality data via a parametric model has attracted the attention of
actuaries, demographers and statisticians for over a century. The most famous such model is
that of Gompertz (1825), which is still used by demographers today; see Pollard (1991). This
approach of summarizing mortality patterns has many advantages over other ways of
describing such data, particularly because it facilitates comparisons over time and space, e.g.
between cohorts, periods and regions. In a thorough review of demographic models, Congdon
(1993) described in detail the advantages of a parameterized model approach: smoothness,
parsimony, interpolation, comparison, trends and forecasting and analytic manipulation.
Renshaw (1991) presented a generalized linear and non-linear models approach to mortality
graduation and provided arguments in its favour. Haberman and Renshaw (1996) reviewed
the application of generalized linear models to several problems arising in actuarial science.
Other approaches to further summarizing mortality data, such as numerical tabulations,
relational procedures, orthogonal polynomials and splines, can be found in Benjamin and
Pollard (1980) and Forfar et al. (1988).

A recent attempt to represent mortality across the entire age range has been the eight-
parameter non-linear model of Heligman and Pollard (1980). Their suggested model has been
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used in the past for a wide range of mortality data, resulting in satisfactory representations of
a variety of patterns; see, for example, Heligman and Pollard (1980), Mode and Busby (1982),
Forfar and Smith (1987), Hartmann (1983), Rogers (1986), Kostaki (1991, 1992a, b) and
Congdon (1993). However, as noted by Rogers (1986) and Congdon (1993), an estimation of
the parameters is problematic owing to the overparameterization of the model, and, also,
numerical instabilities in the (commonly used) weighted least squares approach can only be
removed by fixing two parameters to be constant. Furthermore, such numerical difficulties
create large fluctuations in parameter estimation over time or space, resulting, because of
similar inconsistencies in the dispersion matrices, in a lack of substantive interpretability.

We adopt a Bayesian inference approach which has the following advantages over currently
used methods. First, because the parameters of the model have a straightforward interpreta-
tion, the use of informative prior distributions resolves the problem of overparameterization.
Secondly, the non-normality of the likelihood surface in the parameterization that is usually
adopted means that the least square estimates are inadequate. Thirdly, an application to an
incomplete life-table can be routinely made by using simulation-based Bayesian computation
methodology. Fourthly, posterior densities of other quantities of interest such as the joint
lifetime of a couple or the median lifetime of a person can be derived. For other Bayesian
work related to mortality smoothing and life-table construction, see Kimeldorf and Jones
(1967), Hickman and Miller (1977) and Carlin (1992); Carlin (1992) used Markov chain
Monte Carlo methods but not in a parametric curve modelling context.

This paper is organized as follows. In Section 2 we present the Heligman and Pollard
(1980) formula, suggest two possible modelling approaches for complete life-tables and illus-
trate them with English and Welsh mortality data. In Section 3 we extend this methodology
to incomplete life-tables, and we illustrate it on the same set of data. Finally, in Section 4 we
focus on four problems mentioned in Pollard (1991), namely the calculation of survival and
first-to-die probabilities and the derivation of joint and median lifetimes.

2. Inference for complete life-tables

Heligman and Pollard (1980) suggested a model which represents the underlying life-table
probabilities 7, of dying between exact ages x and x4+ 1, for x =0, 1, 2, . . ., n, via the curve

2
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The idea behind this model is to decompose the odds that an individual of age x will die
before he or she attains age x + 1| into three parts: a child mortality curve, an accident hump
in early adult life and an adult mortality curve. As an example, in Fig. 1 we present log(r,)
and its three parts evaluated from equation (1) for certain values of 4, B, C, D, E, F, G and
H.

The interpretation of the parameters in this model is straightforward. The parameter 4,
taking values in the interval (0, 1), represents the infant mortality rate. B represents the
mortality rate for children who are 1 year old, taking values within the interval (0, 1). The
parameter C takes values in (0, 1) and is closely associated with the rate of mortality decline,
or the rate at which an individual adapts to his environment. The three parameters of the
mid-life mortality component, D, E and F, reflect what is often referred to in the demographic
literature as the accident hump; see, for example, Congdon (1993). In particular, D indicates
the severity of the accident hump and takes values in (0, 1), £ is defined in (0, co) and is
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Fig. 1. Progress with age of the logarithm of the probability of dying and of the logarithms of its three parts as
given by the Heligman—Pollard formula: the formulae were evaluated at (A, B, C, D, E, F, G, H) = (5.44 x 107,
170 x 1072,1.01 x 107", 1.58 x 107*, 10.72, 18.67, 1.83 x 1072, 1.11); this is an estimate of the posterior mean
of (A, B, C, D, E, F, G, H) for the logistic non-linear model applied to the data of Table 1 ( , full curve;
---------- , infant mortality; - - - - -, accident hump; — — —, old age mortality)

related to the spread, with large values indicating a concentrated accident hump, and F is
indicative of the location with domain the interval (15, 110). Finally the two parameters in
the third term in equation (1), G and H, have domains the intervals (0, 1) and (0, o) and
indicate the base level of later adult mortality and the rate of increase in mortality at the later
adult ages respectively.

Heligman and Pollard (1980) also suggested a slightly alternative model with one more
extra parameter in the third part of the model; see also Congdon (1993). Kostaki (1992b)
suggested the inclusion of another parameter in the second part of the model. In this paper
we shall only focus on the eight-parameter model (1).

Many researchers have noticed that the estimation of the parameters @ = (4, B, C, D, E, F,
G, H) of model (1) by least squares methods is problematic. In fact, Heligman and Pollard
(1980) suggested the use of weighted least squares with weights w, = 1 /qf,, where ¢, is the
observed raw frequency estimate of 7. In an experimental study, Kostaki (1992a) noted that
other forms of weights w, cannot provide any form of convergence, and similar results
appear in Hartmann (1983). Rogers (1986) and Congdon (1993) fixed two parameters to
avoid numerical instabilities in the non-linear least squares minimization procedure. Note
that in general, with the exception of the work of Congdon (1993), none of the researchers
who have used model (1) report estimates of the dispersion matrix, a task which poses further
computational problems.

2.1. A non-linear logistic model

Following the Bayesian framework, we treat all model parameters as unknowns and we
specify prior information via probability density functions. We believe that the demograph-
ic interpretability of the parameters will result in informative priors for nearly all the
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parameters. Let n, be the population at risk having age in the interval [x, x + 1) and d, the
number of people who die at that age. Treating the counts of dead individuals at different
ages as independent random variables, each follows a binomial distribution

_ ny d, _ ny—dy
pld,) = ( d,\»>7r"' (I—m)

and so if d is the vector with elements d,, x =0, 1, . . ., n, we obtain
_T ny d ny—dy
p@) =] (d >7r (1= m)"
x=0 X
If we denote the right-hand side of equation (1) by K(x) it follows that
u ny —ny
@) =11 ( d-,) K(x)™ {1+ K(x)} ™. &)

This is a problem of estimating the parameters of a generalized non-linear model.
Denoting by p(0) the prior distribution for @ = (4, B, C, D, E, F, G, H), it follows that for

datad=4d, x=0, 1, ..., n, the resulting posterior is of the form
p(01d) o p(0) p(d) = p(6) HO <Z,‘) K(x)™ {1+ K(x)} ™. (3)

Analytic integration of this eight-dimensional non-normalized posterior joint distribution
is not feasible so we adopt a simulation-based approach to obtaining the posterior summaries
desired. In particular, we suggest a Markov chain Monte Carlo algorithm, at each iteration of
which we update all elements of 6 simultaneously; the background theory is summarized in
Appendix A.

For each Metropolis step we first make a transformation of the parameter vector 8 to a
new vector @' € R® so that the resulting posterior should be ‘close’ to normality; see Hills and
Smith (1992). For example, we take

- 4
A _log(m>’ )
E' =log(E).

After taking care of the Jacobian, we apply a Metropolis step to 8" using as an initial
proposal distribution a multivariate normal distribution with parameters & and ¢3. Here [
and 3 are the maximum likelihood mean vector and covariance (inverse Hessian) matrix
derived by using a non-linear weighted least squares algorithm with weights w = 1/¢> as
suggested by Heligman and Pollard (1980); ¢ is a prespecified constant, which is tuned to
achieve better convergence behaviour measured with respect to both the sampling efficiency
(percentage of accepted proposed moves) and the rate of convergence. After the initial
iteration, the mean vector of the proposal density is updated with the current sampled
parameter vector.

2.2. A model accounting for extra-binomial variation
It can be argued that equation (1) is too restrictive. A deterministic relationship between the
age-dependent probabilities of death 7, and the parameters of the Heligman—Pollard model
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may not explain all the variation exhibited by observed death-rates. We propose to deal with
this as follows. We assume that the Heligman—Pollard formula determines age-dependent
quantities m,:

2
m.  (+B° _ X x
71_mx_A +Dexp{ E{log<F>} ]+GH.

The probabilities of death are random quantities following a beta distribution,
T ™~ beta{(mx, C(l - mx)}a

where ( is an unknown positive quantity determining the variance of the beta distribution.
More specifically, the expected value and variance of m, given ¢ and m, are

E(m|C, m,) =my,,
m\’(l - mA\')
1+¢

If { — oo, m, will again be given by equation (1). The rest of the model remains the same as
the non-linear logistic model of the previous section. If we assign to ¢ a prior distribution
p(€) a full Bayesian analysis leads to the posterior distribution p(8, =, ¢|d, n), where w = (7,
T, . .., T,) We can then express our uncertainties through the marginal posterior distri-
bution for 6.

We again use Markov chain Monte Carlo methods to sample from this analytically in-
tractable posterior distribution. The required full conditional distributions are found to be

V(m,lC, my) =

p(6ld, n, 7, ¢) o p(6) [ a5 "(1 — 7)< =m0~1
x=0

p(ﬂ-|da n, 0» C) &8 H ﬂ-.(x{'\’-‘—(m'\_l(l - ﬂ,x)’l'vidﬁﬁc(li,nﬂil = H beta{dx + mea n, — dx + C(l - mv)}
x=0

x=0

and
p(Cld, m, 7, 6) oc p(Q) TT w1 — )77
x=0

Sampling from the full conditional density of the 7 requires sampling from beta densities.
For the other conditional densities we use Metropolis—Hastings steps. For 0 this step utilizes
the same proposal distribution as in the previous section, whereas for ¢ the proposal
distribution is a log-normal density centred on the old value of ¢ with variance tuned so that
the acceptance rate is around 0.5.

2.3. A log-normal model

The weighted least squares algorithm suggested by Heligman and Pollard (1980) and also
advocated by Kostaki (1992a) uses weights w, = 1/ ¢>. This is implicitly based on the assump-
tion of a constant coefficient of variation across age: for each ¢, with mean 7, and estimated
variance o7, the use of this weight function, instead of the more common form w, = 1/o7,
implies that o> o ¢> and therefore o, /7, is constant since 7, is estimated by ¢.. An equivalent
modelling approach can be based on a log-normal model. To clarify this, assume that we have
response variables y; generated by a model of the form log(y;) = log( f;) + ¢;, with f; being a
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function of parameters and covariates and ¢, ~ N(0, o°). Then, y;, = f; exp(e,) =~ fi(1 + ¢,),
with E(y,) = f; and V(y;) = f70°. The coefficient of variation is then equal to o.

For our mortality data problem, assuming that the probability odds have a constant
coefficient of variation, the log-normal model can be stated as

2
10g<1 qx ) _ log (A(X+B)C + D exp {_E{log(;)} :| + GH‘) + €, (5)
— qx

where €, are independent N(0, ¢°) variables. In this case, for data X = ¢, = d./n., x =0,
1, ..., n and an independent prior p(¢?) for o, the posterior is of the form

—n 1 n
p(6, *IX) o p(6) p(?)~ " exp| - ¥ Jlog [ —2
20 x=0 1 —qx

2 2
—log (A(”B)F + D exp {—E{log(?)} } ~|—GHX>} ] (6)

Here the Markov chain Monte Carlo algorithm requires the updating of both the parameter
vector @ and ¢°. For the former we use the same Metropolis sampler as in the previous
section, whereas for the latter we use a Gibbs step, noting that with an uninformative prior
p(c®) = 072 the conditional density p(c*|0) is

2(0710) = IG<”J£1, 2{2 {10g<qx>

x=0 1 - qx

~tog (47 40 exp| - £{1ox( 3 ) H o) H) ™

This model is clearly less appropriate than the model of Section 2.1 because of the
assumption of constant error variance across age. For the non-linear logistic model note that
the variance of log{g./(1 — ¢,)} is, using a Taylor expansion, equal to 1 /{n.7.(1 — 7,)} which
is not constant. If we assume that 1/n, does not change across age, a suitable variance for ¢,
in equation (5) would be o2 = o* /{7 (1 — 7,)} estimated by ¢*/{q.(1 — ¢,)}. However, n, is
rarely constant across age.

Carlin (1992) also adopted a Bayesian perspective and used Monte Carlo techniques for
mortality graduation. Nevertheless, he did not use a parametric model to describe the be-
haviour of the true probabilities of death. Instead, he considered the latter as the unknown
individual parameters.

2.4. An illustrative example
We illustrate the methodology of the previous subsections by using the 1988—1992 mortality
data of English and Welsh females illustrated in Table 1. The estimated resident populations
on June 30th of each year and the yearly counts of deaths were summed across the five years
to avoid having the observed mortality rates influenced by extreme random fluctuations.
All the models are applied to these data for comparison. The prior for ¢° is the prior
mentioned in the previous section, whereas in all the models the same prior distribution for 6
is chosen as follows. To each component parameter, we assign, independently, a log-normal
distribution log(6;) ~ N(y;, 07), where 11; and o, are implicitly defined by specifying z;; and z;,
to be suitable lower and upper percentiles of the normal distribution (in this application, we
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Table 1. English and Welsh mortality data, females, 1988—1992

X Il\’ ‘l\’ X n.Y Cl'.\ X nv\’ d,\’
0 1682000 11543 25 2078400 689 50 1375500 4130
1 1666400 940 26 2084300 698 51 1365400 4564
2 1644700 538 27 2067000 712 52 1373500 5017
3 1634400 420 28 2021400 799 53 1361300 5417
4 1610000 332 29 1963000 795 54 1335900 5786
5 1581800 250 30 1903800 787 55 1313900 6567
6 1564500 254 31 1844600 935 56 1306200 7173
7 1554700 228 32 1788000 978 57 1306200 8068
8 1549800 208 33 1745500 977 58 1314600 8809
9 1544600 215 34 1714800 1131 59 1325400 10148
10 1514300 182 35 1690300 1219 60 1330600 11390
11 1482500 200 36 1671400 1270 61 1332100 12789
12 1453900 215 37 1668000 1435 62 1328200 13999
13 1436700 204 38 1684600 1516 63 1322300 15528
14 1443000 294 39 1707600 1693 64 1323000 17368
15 1496400 339 40 1755900 1905 65 1329000 19277
16 1576800 412 41 1844500 2207 66 1344200 20991
17 1670500 535 42 1837500 2517 67 1370100 23665
18 1744500 561 43 1812200 2565 68 1408200 26365
19 1822800 592 44 1777100 2918 69 1337400 27664
20 1883200 591 45 1699800 3077 70 1249500 28397
21 1930400 640 46 1563200 3119 71 1174200 29178
22 1964400 623 47 1499200 3369 72 1098800 30437
23 2015600 653 48 1453200 3677 73 1029500 32146
24 2051700 668 49 1408400 3740 74 1052400 35728

obtained the 1% and 99% percentile values by discussion with a colleague, Dr A. Kostaki).
The 1% values are set at

(107%, 107, 1072, 5 x 107>, 0, 15, 1077, 1)
and the 99% values at
2x107%,15x 1072, 3x 107", 1072, 20, 110, 107°, 12 x 107").

For illustration, these represent vague, but still informative, prior beliefs. Given experience
with a series of such problems, more informative forms of prior beliefs would, of course,
evolve, as would some knowledge of parameter correlations.

We can now perform the Markov chain Monte Carlo analysis algorithm; see Smith and
Roberts (1993) for details. For our example, the sampling strategy chosen was to simulate a
single chain. After a number of ‘burn-in’ iterations required for convergence we stored the
outcome of every kth iteration until a sample of 2500 realizations was formed. The length of
burn-in was assessed with the method of Raftery and Lewis (1992). Moreover, with the aid of
visual inspection of trace plots of the realizations of the chain and of the convergence
diagnostics of Geweke (1992) and Heidelberger and Welch (1983) we increased the length of
the burn-in period so that we were fairly sure that it was sufficiently long. & was such that
there was no serial correlation in the stored sample. For the logistic non-linear model for
example, the length of burn-in was 100000 and & was 50. Fig. 2 shows the results for all three
models. The dots represent the observed probabilities of death. For each model, curve (1) was
evaluated at the posterior mean of @ which was estimated by the corresponding sample mean.

Fig. 2 also shows 95% predictive intervals for the logarithm of the observed probabilities
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Fig. 2. Empirical data (e) and fitted and 95% predictive curves for a full table provided by the logistic non-linear
( ), log-normal (--««----- ) and extra-binomial variation (- - - - - ) models

of death across age. They were calculated as follows. For the logistic non-linear model and
for each integer age we have, via the stored output sample of 6, 2500 estimates of the true
probability of dying at that age, ¢.(i) say, i=1, .. ., 2500. For each ¢.(i) we sample one
value d,(i) from the corresponding binomial distribution Bin{b., ¢.(i)} and thus we obtain a
posterior predictive sample d.(i)/n.(i) for the observed probability of dying. The empirical
2.5% and 97.5% quantiles of that sample form the above-mentioned intervals.

For the log-normal model, for each point in the posterior sample of 8, o°, we generate one
value from the corresponding log-normal distribution (5) and thus, after a straightforward
transformation, we obtain a posterior predictive sample ¢.(i) for the observed probability of
dying. The construction of the predictive intervals proceeds as before. For the model dealing
with extra-binomial variation we form the predictive intervals with the same procedure as
before with the inclusion of an extra step where ¢.(i) is obtained by sampling from a beta
distribution.

We see that the estimated curves for all three models provide a good fit for the observed
frequencies. However, the allowance for a changing variance across age in the binomial
model gives better predictive intervals than the log-normal model does. The intervals
provided by the latter are narrower and they miss some of the observed probabilities of
dying. Note that the intervals resulting from the model accounting for possible extra
variation are the widest intervals. They reflect a deterioration in the precision of our estimates
due to the inclusion of ¢ in the logistic model. In the actual example that we present here the
posterior sample mean of ( was 537292.6 with the Markov chain Monte Carlo output sample
ranging between 293605.1 and 1098843.

The pairwise bivariate marginals, in the case of the logistic non-linear model, are shown in
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Table 2. Approximate posterior correlations for the parameters of the logistic
non-linear model

A B C D E F G H
1.00
0.89 1.00

0.82 0.98 1.00
0.16 0.23 0.24 1.00
—-020 —-033 —0.36 0.39 1.00
0.01 —-0.04 —-006 —-0.16 —0.05 1.00
0.15 0.23 0.25 0.05 0.19 —-0.22 1.00
—-0.13 —-021 —-023 —-0.04 —0.20 022 —0.99 1.00

Table 2 in the form of a table of correlations. We can see the strong posterior correlations
between some pairs of parameters (e.g. between G and H, and B and C).

The resulting marginal distributions, along with those from the grouped data case, are
given in Fig. 3 in the form of box plots. We note, in particular, that most of the marginals are
markedly skewed to the right, underlining the danger of posterior or likelihood normal
approximations in the original parameterization.

3. Inference for incomplete life-tables

Mortality data are often collected by using 5-year age groups rather than individual years of
life, except for the first 5 years, which are presented in the two intervals [0, 1) and [1, 5). Thus,
the available data—so-called incomplete or abridged life-tables— are of the form d,, D,, D,
and x = 5, 10, 15, . . ., ', where D, denotes the number of people who died at an age in the
interval starting at x, [x, x+ 1, . . ., x + k] say, and #’ is the starting age of the last group.
Such data are collected, for example, from the World Health Organization. This is a common
method of describing mortality patterns for reasons of convenience, especially in countries
with incomplete and unstable documentation of vital statistics.

The problem of extending an incomplete to a full life-table has been studied by Mode and
Busby (1982), Pollard (1989) and Kostaki (1991). From a Bayesian perspective, the incom-
plete life-table problem can be seen as an incomplete data problem, or, as we shall show
below, as a constrained parameter problem. We can then use a general approach to such
situations using a Markov chain Monte Carlo strategy; see Gelfand et al. (1992).

We assume, as in the case of complete data, that the true probability m, of a person dying
at age x is given by formula (1). We again denote by 6 the parameter vector, and by d, the
number of people dying at age x which is, as before, binomially distributed with parameters
n, and 7. The only known non-random quantities are the grouped population counts N, and
the population with age 0 at last birthday and the only observed data are the grouped death
counts D, and the number of dead children under 1 year old. All the other quantities, i.e. 0,
d, and n,, will be considered, in a Bayesian perspective, as unknowns. Let N, D, n and d be
the vectors of the corresponding quantities. Note that n and d do not contain the quantities
for x = 0.

In this case the full model for the data and the unknowns given everything that is known
will be

p(Da da dOs n, 0|N’ nO) :p(D|da n, 9, N7 dOa no)P(dma 09 N, dOa no)P(doma 9, N’ nO)p(n) 0|N7 nO)'
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Fig. 3. Box plots of posterior marginal distributions (Bin, logistic non-linear model —full table; L-N, log-normal
model —full table; Bin-G, logistic non-linear model — abridged table; E-Bin, model accounting for extra-binomial
variation—full table): (a) A; (b) B; (c) C; (d) D; (e) E; () F; (9) G; (h) H
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We now examine each of the above conditional densities in detail. First, we note that D
depends only on d since

x+k
D, = Z di
and therefore
p(D|d> n, 0’ Na dO’ nO) = Hp(Dxldw e dx+k)a
a product of indicator functions, the product ranging over x =1, 5, 10, . . ., n’.

When n and @ are known, d depends only on these quantities, and, as in the previous
section, its components are independent random quantities binomially distributed:

p(d|n’ 05 N’ dO’ nO) Zp(dlna 0) = H p{dx|n\" 71—‘\'(0)}’
x=1

where by 7,.(0) we denote the probability of dying as a function of the parameters of the
Heligman—Pollard formula (1).
Similarly,

pldpIn, 0, N, ny) = p{dylny, m(0)}.

Finally, we can consider that, a priori, 8 is independent of anything else and that n given N
is independent of 0 so that

p(n’ 0|N, nO) =p(0)p(n|N, n())

where p(@) is the same prior of 8 as in the complete-data case, whereas p(n|N, n,) is, likewise,
the expression of our prior beliefs about population counts per year of age in the light of the
observed counts alone. The prior that we choose is of the form

p(n|Na nO) = Hp(nx’ e nx+k|Nr)'

The product is, again, over x =1, 5, 10, . . ., n’. We assume that counts from different age
groups are independent given the grouped counts and that within each group the distribution
of the individual counts is uniform over the set of all combinations of positive values that
sum to the grouped count. We do this because a priori we have no information about n.

3.1.  Simulation details

The quantity of interest is @ only but since we have missing data we must also carry these
along during the simulation stage. Therefore, we seek to sample from p(6, d, n|D, N, d,, n,).
This is proportional to the full model mentioned in the previous section. A convenient
simulation method is the Gibbs sampler.

We update each vector separately because of their different characteristics. The vectors
have complicated conditional posterior distributions, which we shall mention below, and
therefore for each vector we use the Metropolis—Hastings algorithm, which can handle
distributions of arbitrary complexity.

On the basis of the results of the previous section it is seen that the conditional posterior
distribution of 6, given everything else, is

p(0l) o p(dn, 6) p{dy|ny, m(0)} p(0),
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the same as in the full data case. The conditional posterior distribution of d is

p(d|-) « p(D|d) p(d|n, 6)

and that of n is easily seen to be

p(@[-) o p(din, 6) p(n|N, o).

The sampling from the conditional of 6 is achieved by using the Metropolis—Hastings
sampler of the full data case.

The death counts vector d is updated in blocks, each block referring to an age group. This
is done because, as we said before, when D is given, components of d from different age
groups are independent, but components from the same group are not. The conditional
posterior distribution of each block of death counts is the same as that of the full vector but
without the terms referring to the other age groups. Therefore it is of the form

x+k
p(dx: s e dx+k|') O(p(Dx|d»ca s d,H—k) l:lrp{di|ni7 7Tl(0)}

This is the product of several binomial distributions and of an indicator function. Again, at
each Gibbs step we perform one Metropolis step for each age group as follows.

Assume that we are working in group [x, x + k] and that the current death counts are
d,, ..., d.. One way to propose a new set of counts d, . . ., dy,; is to sample one value
from each of the first k binomial distributions of the group, independently from the others.
This will give proposed values for all except the last age of the group. A value for that can
then be obtained by subtracting the sampled counts from the observed total. Of course, since
the sampling is done independently, nothing guarantees us that the result of the subtraction
will be positive. But then, the posterior distribution of the values proposed will be 0 and
therefore they will be rejected. In other words, we use a sampler with proposal distribution

x+k—1
p(d.\" HERER dx+k) = lj p{di|nia 71-1(0)}

If we keep in mind the forms of the posterior and the proposal we shall see that the
probability of accepting the proposed values is

x+k X+k—1
{Hp{d””i» Wi(e)}:| { I:I pldin;, Wi(e)}:| p(Dxld;a BRI )/c+k)

x+k x+k—1
|: ].:[ p{di|ni7 71-1(0)}:| |: ].:[ p{d”nia Tr[(e)}:l p(Dx|dxa LR ] dx+k)

This simplifies considerably because we only form the ratio if the last count is positive;
otherwise we retain the old values. When the last count is positive the acceptance ratio
becomes

o = min |:1 p{d:/c+k|nx+k, 7rx+k(0)}:|

P {d\‘+k |nx+ks 71—x+k(0) }

The case of the population counts per year of age is very similar. Again we update block by
block and we use the Metropolis algorithm within the Gibbs structure. Assume again that we
are working with group [x, x 4+ k]. The proposal distribution for the counts is a multinomial
distribution with parameters the total count for the group and the same proportion for each
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Prob. of death (log scale)
6

0 20 40 60

Age
Fig. 4. Empirical data (e) and fitted and 95% predictive curves for both the full ( ) and the abridged
(seeeeeees ) tables provided by the logistic non-linear model
age. Therefore, all the values proposed give p(N,|n,, . . ., n.;) =1 and so the acceptance

ratio, after some cancellations, is

X+k , x+k ,
[ pidin, 7(0)} [] n!

i=x i=x

a=min |1,
R x+k

x+k
H‘P{dimn 7(0)} l:[ n;!

3.2. An example

For illustration —and to aid a direct comparison with our earlier analysis of the English and
Welsh data—we have grouped the data of Table 1 into the above-mentioned age intervals.
We have used exactly the same prior distributions for € as in the complete-data case and a
similar simulation strategy. Fig. 4 shows the fitted curve and the 95% predictive intervals and
also repeats the results of the logistic non-linear model for the full data case. Fig. 3 depicts, in
the form of box plots, the marginal distributions derived.

We see in Fig. 4 that the predictive intervals arising from the analysis of the grouped data
are slightly wider than those of the full data case. Furthermore, we observe from Fig. 3 that,
in the case of the logistic non-linear model, the posterior distributions derived from the
abridged table have greater variance than those referring to the full table. This is expected
because the full table provides more information than the abridged table does.

4. Other posterior summaries

Many other quantities derived from the underlying model parameters are of interest to
actuaries and demographers. Least squares approaches are not well suited to deriving
inferences for non-linear transformations of basic parameters. However, the simulation-
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based Bayesian framework provides an easy way to calculate such quantities. For non-
Bayesian approaches, see Pollard (1991) and Congdon (1994). In the following subsections,
we shall outline the Bayesian approach to inference for four such quantities (based on either
complete or incomplete data). An illustrative analysis will be presented for the first of these
only.

4.1.  Survival probability
The survival probability, denoted ,p,, is defined as the probability of surviving from age x to
age x + 1, so

t—1
Px = 1 - Ty = H)(l - 7T.\'+i)' (8)

It is simple to see that a sample from ,p, is readily available if we utilize the sample from 7,
obtained as described in Section 2. The posterior survivor function (or lifetime) of a person
can then be plotted in a way similar to that presented in Dellaportas and Smith (1993): for a
given age, a posterior sample of the survivor probability can be summarized in a box plot
form as shown for the English and Welsh females data and for r = 5 in Fig. 5.

4.2. First to die

Assume that there are two independent people Z and Y subject to the same life-table
probabilities, and that we are asked to estimate the probability that one of them, Z say, will
die first. Let 7, , and 7, ,, and ,p, , and ,p, , forx=0,1,.. ,nandr=1,2,.. ., n—x, be
the probabilities of dying and the survival probabilities of the two people respectively. Let the
current ages of the two people be z and y respectively, with z > y, and denote by d. , the
probability that the first person dies first when their ages are z and y. It is readily shown that
the probability required is

1.00

e T e e .

Probability
0.94 0.96 0.98
L

0.92

0.90

—

0 5 10 15 20 25 30 3 40 45 50 55 60 65 70
AGE

Fig. 5. Posterior survivor function ;p, for a full table provided by the logistic non-linear model, t =5
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P(Z dies first) = d_,
+d1 1 X1P1- X1 D2y

+dyo 40 Xa P12 XaPoy

+ dn,y-%—n—z Xn—zpl,: Xn—zpz.y' (9)

Again, for a set of sampled values of 7, , and 7, ,, and ,p, , and ,p, ,, we can easily estimate
all the probabilities on the right-hand side of equation (9). Probabilities such as d. , can be
estimated by simply checking when, in the posterior samples of 7, . and m, ,, the value of the
first variate is larger than the value of the second.

4.3. Joint lifetime

The time to death of two people, considered as an entity, is sometimes defined as the time to
the death of the first of them. Assume that the two people, aged y and z, have probabilities of
dying 7, , and 7, . and survival probabilities ,p, , and ,p, .. The probability that at least one
death occurs in the next ¢ years, say J,, is just

Jt = tpl,y X 17r2,z + l7rl,y X lp2“z + tﬂ—l,y X t7r2,z (10)

and illustrative graphs can be produced in the same way as for the lifetime of one person as
described earlier.

4.4. Median time to death

The median lifetime can be determined by equating ,p, in equation (8) to 0.5. For m sampled
values of (0, 0*) we can produce m values of (r,, Teils « « - Typn)> and therefore m values of
Pt =1, ..., n—x. Wecan then solve equation (8) m times and produce a posterior sample
of the median life time to death. The equation can be solved via an efficient search numerical
algorithm; see for example Ripley (1987), section 3.3.

5. Discussion

We have taken up the theme in Congdon (1993) that parametric modelling of mortality data
offers many advantages. However, the implementation of a statistical analysis for highly
parameterized non-linear functions is non-trivial, even for the log-normal case, let alone
for generalized non-linear model cases. We have shown that Markov chain Monte Carlo
techniques overcome this problem and enable rich and flexible inference summaries to be
provided, not only for the mortality curves and their parameters, but also for a variety of
related predictive problems such as calculations of survival probabilities, first-to-die prob-
abilities, joint lifetimes and median times to death.

Future work will include attempts at modelling the time evolution of parameters (a form of
non-linear filtering).
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Appendix A

Assume that, for a given parameter vector # € %t* and data x, we require a sample from the posterior
density p(€]x). Markov chain Monte Carlo approaches construct an irreducible and aperiodic Markov
chain with realizations 8', @*, . . ., @', . . . in the parameter space, equilibrium distribution p(8|x) and a
transition probability

K(@©',0)= PO =00 =0)

where 0 and @’ are the realized states at times ¢ and ¢ + 1 respectively. Under appropriate regularity
conditions, asymptotic results guarantee that, as t — oo, ' tends in distribution to a random variable
with distribution p(@|x) and that the ergodic average of an integrable function of 6 is a consistent
estimator of the posterior mean of the function.

Different choices of the transition kernel K lead to different Markov chain Monte Carlo sampling
schemes. A range of hybrid algorithms can also be derived by combining different schemes. We briefly
describe here the two schemes used in the paper.

A.1.  The Metropolis—Hastings algorithm

The Metropolis—Hastings algorithm simulates a Markov chain by using the transition kernel
q(6'16) (0'10) if @' +# 0,

K(@,60)=1q_ S q(0710) a(0”10) otherwise,
c

where ¢(0'|0) is a proposal conditional distribution and «(6'|0) is an acceptance conditional distribution,
defined (here) by
/ [ p(&'Ix) q(010") }
CAL :mm{i, ls.
@10 (01 4(0'16)

A.2. The Gibbs sampler

The Gibbs sampler can be regarded as a special case of the Metropolis—Hastings algorithm. The
transition from state ¢ to state £+ 1 is achieved via a sequence of k steps, each updating every co-
ordinate of @ in turn. The algorithm requires the ability to sample from all full conditional densities of
the form p(6;|0,, 0>, . . ., 0;_y, 6,11, . . ., ;). The transition kernel is given by

k
K(©'10) =[] p@: 16", .. . 051, 60, .. ., 6)).
i=1

References

Benjamin, B. and Pollard, J. (1980) The Analysis of Mortality and Other Actuarial Statistics, 2nd edn. London:
Heinemann.

Carlin, B. P. (1992) A simple Monte-Carlo approach to Bayesian Graduation. Trans. Soc. Act., 44, 55-76.

Congdon, P. (1993) Statistical graduation in local demographic analysis and projection. J. R. Statist. Soc. A, 156,
237-270.

(1994) Analysing mortality in London: life-tables with frailty. Statistician, 43, 277-308.

Dellaportas, P. and Smith, A. F. M. (1993) Bayesian inference for generalized linear and proportional hazards
models via Gibbs sampling. Appl. Statist., 42, 443-459.




Bayesian Analysis of Mortality Data 291

Forfar, D. O., McCutcheon, J. J. and Wilkie, A. D. (1988) On graduation by mathematical formula. J. Inst. Act.,
115, 1-149.

Forfar, D. O. and Smith, D. M. (1987) The changing shape of English life tables. Trans. Fac. Act., 40, 98—133.

Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to calculating marginal densities. J. Am.
Statist. Ass., 85, 398—409.

Gelfand, A. E., Smith, A. F. M. and Lee, T.-M. (1992) Bayesian analysis of constrained parameter and truncated
data problems. J. Am. Statist. Ass., 87, 523-532.

Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In
Bayesian Statistics 4 (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 169-193. Oxford:
Oxford University Press.

Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of
determining the value of Life Contingencies. Phil. Trans. R. Soc., 115, 513-585.

Haberman, S. and Renshaw, A. E. (1996) Generalized linear models and actuarial science. Statistician, 45, 407—436.

Hartmann, M. (1983) Past and recent attempts to model mortality at all ages. J. Off. Statist., 3, 19-36.

Heidelberger, P. and Welch, P. (1983) Simulation run length control in the presence of an initial transient. Ops Res.,
31, 1109-1144.

Heligman, L. and Pollard, J. H. (1980) The age pattern of mortality. J. Inst. Act., 107, 49-80.

Hickman, J. C. and Miller, R. B. (1977) Notes on Bayesian graduation. Trans. Soc. Act., 29, 1-21.

Hills, S. E. and Smith, A. F. M. (1992) Parameterization issues in Bayesian inference. In Bayesian Statistics 4 (eds
J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 227-246. Oxford: Oxford University Press.

Kimeldorf, G. S. and Jones, D. A. (1967) Bayesian graduation. Trans. Soc. Act., 19, 66-112.

Kostaki, A. (1991) The Heligman-Pollard formula as a tool for expanding an abridged life table. J. Off. Statist., 7,
311-323.

(1992a) Methodology and applications of the Heligman-Pollard formula. PhD Thesis. Department of

Statistics, University of Lund, Lund.

(1992b) A nine-parameter version of the Heligman-Pollard formula. Math. Popin Stud., 3, 277-288.

Mode, C. and Busby, R. (1982) An eight parameter model of human mortality — the single decrement case. Bull.
Math. Biol., 44, 647-659.

Pollard, J. H. (1989) On the derivation of a full life table from mortality data recorded in five-year age groups. Math.
Popln Stud., 2, 1-14.

(1991) Fun with Gompertz. Genus, 57, 1-19.

Raftery, A. L. and Lewis, S. M. (1992) How many iterations in the Gibbs sampler? In Bayesian Statistics 4 (eds J. M.
Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 763-773. Oxford: Oxford University Press.

Renshaw, A. E. (1991) Actuarial graduation practice and generalised linear and non-linear models. J. Inst. Act., 118,
295-312.

Ripley, B. D. (1987) Stochastic Simulation. New York: Wiley.

Rogers, A. (1986) Parametrized multistate population dynamics and projections. J. Am. Statist. Ass., 81, 48-61.

Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain
Monte Carlo methods. J. R. Statist. Soc. B, 55, 3-23.




